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Multiparticle breathers for a chain with double-quadratic on-site potential

S. Neusu¨ß and R. Schilling
Institut für Physik, Johannes Gutenberg-Universita¨t Mainz, Staudinger Weg 7, 55099 Mainz, Germany

~Received 23 April 1999!

We investigate the existence and properties of multiparticle breathers for a one-dimensional model with
harmonic nearest neighbor interactions where a group ofr particles (r 51,2,3, . . . ) perform interwell oscilla-
tions between both wells of a double-quadratic on-site potiential. We find two types of such breathers. For the
first type the breather frequencyV is within the single-particle oscillator spectrum, and the ‘‘residence’’ time
of each breather particle in the left and right well is about the same. For the second breatherV is below that
spectrum, and the ratiotL /tR of the residence time in the left and right wells is different from zero, and takes
approximately rational values like14 , 1

3 , 2
3 , 3

4 , etc. This second type of breather occurs for two and more breather
particles only.@S1063-651X~99!07411-5#

PACS number~s!: 45.05.1x, 63.20.Pw, 63.20.Ry
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I. INTRODUCTION

Very often, the classical dynamics of macroscopic s
tems like crystalline and amorphous materials can be un
stood by a knowledge of their elementary excitations. T
most prominent example are theharmoniclattice vibrations.
For a periodic lattice these areextendedplane waves. Intro-
ducing disorder, as present in glassy systems, part of t
harmonic excitations may become localized, a phenome
called Anderson localization. It is interesting that such loc
ized vibrations can also occur in periodic latticeswithout
disorder, due toanharmonicity. In recent years a lot of ac
tivity has been devoted to studying the existence and p
erties of such nonlinear localized excitations~NLE’s!, also
called ‘‘discrete breathers’’ or just ‘‘breathers’’ in the fo
lowing. Rather different approaches~numerical, rotating
wave approximation, local ansatz, etc.! have given strong
evidence of the existence of NLE’s, mainly in on
dimensional systems but also in two-dimensional syste
For more details, the reader is referred to the reviews
Flach and Willis@1# and Sievers and Page@2#.

A physical understanding of why discrete breathers m
occur comes from the exact existence proof by MacKay
Aubry @3# ~see also Ref.@1#!. Since we will come back to this
point below, let us briefly describe the main idea. Consid
ing a classicalN-particle Hamiltonian for particles with mas
m of the form

H~p1 , . . . ,pN ;u1 , . . . ,uN!

5 (
n51

N F 1

2m
pn

21V0~un!G1C V1~u1 , . . . ,uN! ~1!

for the displacementsun from the lattice siten of a
d-dimensional lattice and their conjugate momentapn , these
authors started from the so-called anti-integrable limitC
50, where the interaction potentialV1 is turned off. In that
limit the dynamics is determined exclusively by the on-s
potentialV0, leading to independent periodic orbits for theN
particles. For the generic case of an anharmonic potentiaV0
the corresponding frequenciesVn may be different for all
particles. Now take the case where all particles are at r
PRE 601063-651X/99/60~5!/6128~9!/$15.00
-
r-
e

se
on
l-

p-

s.
y

y
d

r-

st,

i.e., Vn50, nÞm but the mth particle is oscillating with
Vm5V.0. Turning on the interaction one can prove th
~under rather general conditions! the orbits for small but non-
zero C continuously develop from this special situation f
C50. This means that all the particles perform periodic o
cillations with frequencyV and amplitudes decaying expo
nentially with distance from particle numberm. Hence the
existence ofperiodic breathersis proven, providedC is
small enough.

If the on-site potential has a multiwell structure, two d
ferent types of NLE’s may exist: first, where all particles a
oscillating within one of the wells for all times, and, secon
where one particle or a group of particles are oscillating
tween, e.g. two wells, and the others stay in their well f
ever. This second type of breather was recently observed@4#
for a one-dimensional version of Hamiltonian~1! with V0(u)
a symmetric, double-quadratic~DQ! potential:

V0~u!5 1
2 „u2s~u!…2, ~2a!

where

s~u!5sgnu ~2b!

and

V1~u1, . . . ,uN!5 1
2 (

n
~un112un!2 ~2c!

are harmonic, nearest neighbor interactions. This molec
dynamics simulation at finite constant energy, which cor
sponds to a finite temperature, has shown that groups
about 3–5 particles perform such periodic interwell oscil
tions at intermediate temperatures@4#. However, their life-
time is finite, due to nonzero temperature.

It is the main motivation of this paper to study the ex
tence and properties of such interwell breathers made upr
particles (r 51,2,3, . . . ) for potentials~2! and for zero tem-
perature. The reader should note that NLE’s of the first k
do not exist for this model due to the complete harmonic
of V0 @cf. Eqs.~2a! and~2b!# within each well. The particles
‘‘feel’’ the anharmonicity only when crossing the local ba
rier of V0(u) at u50. Despite the rather simplified choic
6128 © 1999 The American Physical Society
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PRE 60 6129MULTIPARTICLE BREATHERS FOR A CHAIN WITH . . .
for V0(u), we expect that the existence and characteri
features of its interwell NLE can be carried over to mo
general on-site potentials with a multiwell structure.

The outline of our paper is as follows. In Sec. II we w
present the formal solution for anr-particle breather. In Sec
III the discussion of the self-consitency condition singles
the physical breathers, the properties of which will be inv
tigated separately forr 51 andr>2. Section IV contains a
summary and some conclusions.

II. NONLINEAR EXCITATIONS: FORMAL SOLUTION

Before we come to the solution of the full equation
motion in order to search for breathers, we briefly discuss
antiintegrable limitC50. Since the one-particle energyE0

5(1/2m)pn
21V0(un) is a conserved quantity, it is an eas

task to calculate the frequencyV of the periodic motion as a
function of E0. One obtains

V~E0!55 1, E0,
1

2

F11
2

p
arcsinS 1

A2E0
D G21

, E0.
1

2
,

~3!

which is illustrated in Fig. 1. Note that we use dimensionle
units throughout this paper. For instance the frequencyV is
measured in units ofAC0 /m and the energy in units ofC0.
Here C0 is the coupling constant of the on-site potenti
which in Eq.~2a! has been set to 1. ForE0 smaller than the
barrier heightV0(0)5 1

2 the frequency is constant, and equ
to 1, due to the harmonic intrawell motion. AtV0(0) the
frequency makes a jump to the value1

2 and increases mo
notonously withE0 toward its asymptotic valueV(`)51.
Application of the argumentation of MacKay and Aubry@3#
would imply the existence of breathers for frequenc

VP@ 1
2 ,1#.

Now we turn to the full equation of motion. For potenti
~2! and choosingm51, this reads:

ün~ t !1~112C!un~ t !2C@un21~ t !1un11~ t !#5sn~ t !,
~4a!

FIG. 1. Dispersion relation for the uncoupled oscillator.
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where un(t) has to fulfill the self-consistency conditio
~SCC!

sn~ t !5sgnun~ t !. ~4b!

Let us assume for a moment that all of the particles rem
within their well ~left or right! forever, i.e., it issn(t)[sn
for all t, wheresn561 can be chosen arbitrarily. Letun(s)
be the stationary solution of Eq.~4! for given s
5(s1 , . . . ,sN). It has been shown@5# that a one-to-one
correspondence exists between all stationary, metast
configurationsu(s)5„u1(s), . . . ,uN(s)… and all Ising spin
configurationss, provided the modulos of

h5
1

2C
~112C2A114C! ~5!

are smaller than1
3 @5#. The metastability holds providedC

.2 1
4 . With the ansatz

un~ t !5un~s!1«n~ t !, u«n~ t !u!1,

from Eq. ~4a! we obtain

«̈n~ t !1~112C!«n~ t !2C@«n21~ t !1«n11~ t !#50. ~6!

Its solutions are plane waves«n(t)5«0 exp@i„v(q)t2qn…#
with phonon frequencies

v~q!5@112C22C cosq#1/2, qP@2p,p#, ~7!

which are within the phonon band@v low(C),vup(C)#. The
lower and upper phonon band edge are given by

v low~C!5H 1, C>0

A114C, 2
1

4
,C<0,

vup~C!5H A114C, C>0

1, 2
1

4
,C<0.

~8!

Since we are looking for periodic breathers with an expon
tially decaying amplitude it is obvious~see also Ref.@1#! that
the breather frequencyV and all its higher harmonics
kV,k>2 must be outside the phonon band. For a givenC,
this condition restrictsV to the finite number of nonresonan
bands $V%k5„vup/(k11),(v low /k)…,k51,2, . . . ,kmax(C)
shown in Fig. 2. It is easy to prove that

kmax~C!5F v low~C!

vup~C!2v low~C!G ,
where@x# denotes the largest integer less than or equal tx.
FrequenciesV above the phonon band trivially fulfill the
nonresonant conditions for all harmonics. This part is n
depicted in Fig. 2. But in our investigations we have n
found breathers withV.vup(C). We will come back to this
point in Sec. IV.

In addition to this, two further observations can be ma
from Fig. 2. First, the nonresonant band$V%1 is only a sub-

set of the single-oscillator spectrum@ 1
2 ,1# for CÞ0. Second,
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6130 PRE 60S. NEUSÜß AND R. SCHILLING
if breathers will exist withVP$V%k , k>2, they cannot be
obtained from the single-oscillator behavior forC50 by
continuation.

Now we turn to the investigation of breathers. Due to t
simple form ofV0(u) the type of breather can be specifie
by the pseudospin functionssn(t). Let us assume that par
ticles n50,1,2, . . . ,r 21 perform periodic interwell oscilla-
tions, whereas all the others remain in their ground state w
@6#, i.e.,

sn~ t ![21, nÞ0,1, . . . ,r 21 ~9a!

for all t. The behavior ofsn(t) for n50,1, . . . ,r 21 during
a period2T/2<t<T/2 can be rather complicated, e.g., mo
than one transition21→11→21 may occur. To make
progress we will consider breathers characterized by

sn~ t !5H sgn tn, utu<
1

2
utnu

2sgn tn,

1

2
utnu<utu<

1

2
T,

n50,1, . . . .r

~9b!

where utnu,T. If tn.0, the ‘‘breather particle’’ n(n
50,1, . . . ,r 21) is in its ground state well (sn521) for
t¹@2tn/2,tn/2#, and resides in the right well ofV0(u) (sn
511) for tP@2tn/2,tn/2#. The reverse holds ittn,0. The
r-particle breather is then characterized by its frequencyV,
and the interwell transition timest0 ,t1 , . . . ,t r 21.

The restriction to periodic breathersun(t), which also im-
plies the periodicity ofsn(t), allows one to represent bot
by Fourier series. If in addition we also require time inve
sion symmetric breathers, i.e.,un(2t)5un(t), we have

un~ t !5211 (
k50

`

An
(k)coskVt ~10a!

and

sn~ t !5211 (
k50

`

sn
(k)coskVt. ~10b!

Our choice@Eq. ~9!# yields, for the coefficientssn
(k) ,

FIG. 2. Nonresonant frequency bands~bounded areas!.
e

ll

-

sn
(k)50, nÞ0,1, . . . ,r 21, ~11a!

sn
(k)5H 211~2uanu21!sgnan, k50

4~sinkpan!/~pk!, k>1,
n50,1, . . .,r 21.

~11b!

For convenience we have introduced the dimensionless ti

an5tn /T ~12!

Substituting Eqs.~10! into Eq. ~4a! leads to

kk~V!An
(k)1An21

(k) 1An11
(k) 52

1

C
sn

(k) ~13!

with

kk~V!5
1

C
@~kV!22~112C!#. ~14!

This equation can be solved forn<21 andn>r due to Eq.
~11a!, which gives, for the amplitudes,

An
(k)5H A0

(k)hk
unu , n<21

Ar 21
(k) hk

n2(r 21) , n>r ,
~15!

with

hk~V!52 1
2 @kk~V!2sgnkk~V!A„kk~V!…224#. ~16!

It is easy to see thatukk(V)u.2 for kV outside the phonon
band. Then Eq.~16! yields uhk(V)u,1, consistent with our
requirement of exponentially decaying breather amplitu
We note thath0 coincides withh from Eq. ~5!.

For 0<n<r 21 a finite set of inhomogeneous linea
equations forAn

(k) results,

(
n850

r 21

Mnn8An8
(k)

52
1

C
sn

(k) , ~17!

with the tridiagonalr-dimensional matrix

M5~Mnn8!5F kk1hk 1 0 ••• 0

1 kk 1 � A

0 � � � 0

A � 1 kk 1

0 ••• 0 1 kk1hk

G .

~18!

Then the remaining amplitudes follow from

An
(k)52

1

C (
n850

r 21

~M21!nn8sn8
(k) , ~19!

with sn
(k) from Eq.~11b!. The inverse ofM can be calculated

analytically:
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~M21!nn852
sgnkk~V!

Akk
2~V!24

hk
un2n8u[

~sgnkk!uhku

12hk
2

hk
un2n8u .

~20!

Equations~10!–~20! yield the formalr-particle breather so
lution un(t), which still has to fulfill the SCC~4b!.

III. PHYSICAL BREATHER SOLUTIONS

In this section we will determine conditions for th
breather frequencyV and the dimensionless transition tim
a0 ,a1 , . . . ,a r 21 , such that the SCC@Eq. ~4b!# is fulfilled.

A. One-particle breathers

For r 51, Eqs. ~10!–~20! yield the explicit but formal
breather solution

un~ t !5211An
(0)~a!1 (

k51

`

An
(k)~V,a!coskVt, ~21a!

with

An
(0)~a!5

2a

A114C
h0

unu , ~21b!

An
(k)~V,a!52

4

p

sinkpa

k

sgn kk~V!

CAkk
2~V!24

~hk~V!! unu, k>1,

~21c!

where we have seta05a.0. The reader should note tha
h0 does not depend onV. Inspection of Eq.~21! shows that,
for k>1,

ukk~V!u→2⇒An
(k)~V,a!→ 4

p

sinkpa

k

1

2CAukk~V!u22
~22!

and

k→`⇒An
(k)~V,a!;

1

k3
k22unu. ~23!

The asymptotic behavior@Eq. ~23!# of An
(k)(V,a) guarantees

the absolute convergence of the infinite series in Eq.~21a!.
For n50 it follows thatu0(t) and its first derivativeu̇0(t) is
continuous for allt, whereasü0(t) discontinuously change
at t56t/2. With increasing unu the solutions become
smoother. Equation~22! just describes what happens wh
the kth harmonics approaches the phonon band from be
or above. Since kk(V)→22(12) for kV
→v low(C)„vup(C)… the corresponding amplitudeAn

(k)(V,a)
diverges. In additionuhk(V)u converges to one such that th
amplitudes decay very slowly withunu. Result~22! demon-
strates that forkV outside the phonon band but near to t
band edges it is thekth harmonic which governsun(t) ~see
also Ref.@7#!. In that case it is rather easy to fixa. A nec-
essarycondition that the SCC holds is

u0~6t/2![u0~6aT/2![u0~6pa/V!50. ~24!
w

Let VP$V%k5„@vup/(k11)#,(v low /k)… for fixed k. For V
near to the edges of the nonresonant band$V%k , which im-
plies that (k11)V andkV is a bit above and a bit below th
phonon band, respectively, it follows from Eqs.~21! and~22!
that u0(t) can be well approximated by

u0~ t !>211
2a

A114C
1

2

pC F sinkpa

Aukk~V!u22
coskVt

1
sin~k11!pa

Aukk11~V!u22
cos~k11!VtG , ~25!

such that Eq.~24! leads to

sin 2pka

Aukk~V!u22
1

sin 2p~k11!a

Aukk11~V!u22
>

pC

2 S 12
2a

A114C
D .

~26!

The right-hand side of Eq.~26! is finite for all a andV. In
order that this is also true for its left-hand side, we mu
choose

a~V!>an
(k)5H n11

2~k11!
, V→ vup

k11

n

2k
, V→ v low

k
,

~27!

where n50,1,2, . . . ,2k. To determinea(V) for all V
<v low(C), we have calculatedu0(t) from Eqs.~21! numeri-
cally. For this we have introduced a cutoffk0550 in Eq.
~21a!. A change fromk0550 tok05100 has not changed th
result for u0(t) more than 1028. The numerical calculation
of u0(6t/2) then yields@with Eq. ~24!# a(V), which is
shown in Fig. 3. We see that within each nonresonant b
$V%k thenecessarycondition~24! leads to(2k11) solutions
an

(k)(V) for a(V) which converge to the limiting value
~27! at the edges. However, we have found that the SCC~4b!
can only be fulfilled fora(V)[an51

(k51)(V)' 1
2 .

Writing

a~V![ 1
2 1d~V!, ~28a!

an approximate, analytical expression can be derived
d(V) @7#:

FIG. 3. Parametera as a function of the breather frequencyV
for ~a! C.0 and~b! C,0. The vertical lines mark the lower pho
non band edge.
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d~V!5
1

2

A114C21

122A114CFs1~V!1 (
k52

`

~21!ksk~V!G ,

~28b!

with

sk~V!5
1

uCu ~kk
2~V!24!21/2. ~28c!

Comparison of the numerical exact result fora(V) with the
analytical result~28! is made in Fig. 4 for different values o
the coupling constantC. Note that the edges of$V%1 depend
on C. The agreement between both results is remarka
good. The deviation is less than 1%. Therefore we can c
sider result~28! as almost exact.

The final step now is to check whether the SCC is fulfill
for all C with 2 3

16 <C< 3
4 , for which $V%1 exists~cf. Fig.

2!. Both limits for C follow from the conditionvup(C)/2
5v low(C) for C,0 andC.0. The answer is no. The nu
merical investigation of the SCC yields that one-parti
breather exist only for

Cmin520.1368~1!<C<0.4126~1!5Cmax,

and that their frequencies are restricted to

Vmin~C!<V<Vmax~C!.

This region in theV2C plane, where physical one-partic
breathers exist~which is only a subset of$V%1) is presented
in Fig. 5. The solid lines~boundary lines of the hatche
region! in that figure represent approximate, analytical
sults for the phase boundariesVmin(C) and Vmax(C). Since
these expressions are not quite simple@8#, we do not repre-
sent them here explicitly, but just mention thatVmin(C) fol-
lows from the condition that forVP$V%1 it must be V
.vup(C)/2. ForV near tovup(C) it is the second harmonic
in Eq. ~21a! which is dominant. Taking foru0(t) only the
terms withk50 and 2 into account,Vmin(C) follows from
the SCC~4! for this approximate result foru0(t). Vmax(C)
follows similarly from the SCC foru61(t)which is u61(t)
,0 for all t.

FIG. 4. Analytical approximation ofa' 1
2 1d(V) ~lines! in

comparison to numerical results~symbols! for different values ofC.
ly
n-

-

Again, the agreement between the numerical exact
the analytical phase boundaries is remarkably good.
uCu!1, the allowed breather frequencies are between1

2 and
1 which is the range of the single-oscillator frequencies. T
range of allowed frequencies shrinks with increasinguCu.

The results we have found demonstrates that only o
particle breathers exist which can continuously be deriv
from the single oscillator excitation forC50. This also is
consistent with the fact that breather solutions forCÞ0 only
exist for a' 1

2 , because for the single oscillator the timet
where the particle is in the right well is just half of the perio
T, i.e., it is a5 1

2 . That no breathers exist forVP$V%1 and
a(V)5a0

1(V) or a(V)5a2
1(V) can at least be understoo

for V at the edges which implies, e.g.,a0
1(V)'0 and

a1
1(V)'1, respectively.a0

1(V)'0 means that particle zer
is in the right well for a very short timea0

1(V)T/2, only.

Therefore,u0(t) and ü0(t) can be made arbitrary small for
2a0

1(V)T/2<t<a0
1T/2 by decreasinga0

1(V). On the other
hand, the breather amplitude is decaying withunu. Therefore
u1(t) andu21(t) must also be small. Consequently, the le
hand side of the equation of motion~4a! for u0(t) can be
made arbitrarily small, which is in contradiction with the fa
that its right-hand sides0(t) is equal to 1 in that time inter-
val. For a(V)5a2

1(V)'1 the proof is quite similar. One
has just to notice that particle zero is in the left well for
short time only. The nonexistence of breathers withV
P$V%k for k>2 can also easily be understood at least at
edges of$V%k . At these edges it is thekth harmonic with
k>2 which dominates the solutionu0(t). Since their time
dependence is given by cos(2pkt/T) there will bek>2 oscil-
lations within the period@2T/2,T/2# which leads to a viola-
tion of the SCC. Figure 6 illustrates this situation forV
P$V%2 andC50.1. In Fig. 6~a! and 6~b!, the SCC is violated
within the time interval 0<utu<t/2 and t/2<utu<T/2, re-
spectively.

Finally, it is instructive to investigate the energyE(V,C)
of the one-particle breather with frequencyV for given cou-
pling constantC. It is easy to prove that itsV dependence is
given by

E~V,C!5V2Ẽkin~C!1Ẽpot~C!, ~29!

FIG. 5. Phase diagram for single-particle breathers. Thick s
lines indicate the analytical approximations to the limiting freque
ciesVmin(C) andVmax(C) ~cf. text!.
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where Ẽkin(C) and Ẽpot(C) follow from Eqs. ~1!, ~2!, and
~21! by taking into account thatun(t)5ũn(t/T) with ũn(x
11)5ũn(x). The one-particle breather we consider cor
sponds to a periodic motion between the two metastable
figurations characterized bys, with sn521 for all n and
s8 with sn521 for all nÞ0 ands0511, i.e., both pseu-
dospin configurations differ from each other by a single s
flip at n50. The barrier heightEb , which has to be sur-
mounted when passing from the metastable configura
$un(s)% to $un(s8)%, can be calculated similarly as wa
done for a double spin flip in Ref.@5#, just by adding a force
term Fdn,0 on the right-hand side of Eq.~4a!, where in ad-
dition ün(t) must be set to zero. Then we obtain the statio
ary configurations$un(F)%, from whichEb follows. The re-
sult is

Eb~C!5
1

2

11h0~C!

12h0~C!
, ~30!

where h0(C)[h(C) from Eq. ~5!. Since E(V,C)
.E„Vmin(C),C…[Emin(C), we compare the minimum
breather energyEmin with Eb , which is done in Fig. 7. Ex-
cept for C50, the case of the single oscillator, it
Emin(C).Eb(C), i.e., the dynamical barrierEmin is always
larger than the static one, as one would expect. Their de
tion is largest forC→Cmin andC→Cmax.

Let us finally comment on one-particle breathers withV
above the phonon band. In contrast to af4 potential we have
not found such breathers. We have not been able to ri

FIG. 6. Two formal solutions foru0(t) as a function of time for
V in the second nonresonant frequency band for~a! a50.51046
and ~b! a50.310319.

FIG. 7. Minimum energy of the single-particle breather in d
pendence onC ~symbols!. The solid line represents the static barri
Eb ~cf. text!, and the dashed line is a guide for the eye.
-
n-

n

n

-

a-

r-

ously disprove their existence, but we are convinced t
their nonexistence is related to the fact that the sing
oscillator frequencies forC50 are either below or within the
phonon band, depending on the sign ofC.

B. Multiparticle breathers

Having studied the existence and properties of o
particle breathers, we will now investigate breathers wher
adjacent particles (r>2) perform coherent interwell oscilla
tions. As already mentioned in Sec. II multiparticle breath
can have a rather complex time dependence, particularly
to their ‘‘internal dynamics.’’ For instance, the particles m
oscillate in phase, antiphase, or may even have arbit
phase relations. Here we will restrict ourselves to in-ph
and antiphase breathers, which are specified by the pse
spin oscillations forn50,1, . . . ,r 21,

111•••1↔222•••2

and

121•••2↔212•••1,

respectively. Of course, the times6tn/2[6anT/2 where
the nth breather particles crossesun50, still depend onn.

The r-particle breathers have been obtained by numer
calculation ofun(t) from Eqs.~10a!, ~15!, and ~19! taking
Eqs.~11!, ~12!, ~14!, ~16!, and~20! into account. The neces
sary condition

un~6anT/2!50, n50,1, . . . ,r 21 ~31!

yields, for an(V), a qualitatively similar result as forr
51, shown in Fig. 3. Let us first discuss the in-phase brea
ers. The detailed discussion of the SCC reveals that in-ph
breathers can only exist forVP$V%1 and an' 1

2 ,n
50,1, . . . ,r 21, as we have found forr 51. The V2C
phase diagram for the existence of multiparticle breather
shown in Fig. 8 forr 52, 3, and 5. The solid lines which ar
the approximate border lines for the region wherer-particle
breathers exist can analogously be obtained as the co
sponding linesVmin(C) andVmax(C) for r 51 @8#. From Fig.
8 we see that the region of existence does not depend s
tively on r, but slightly shrinks with increasingr.

The result for antiphase breathers with an' 1
2 , n

50,1, . . . ,r 21 does not differ much from the results for th
in-phase breathers. The phase diagram shown in Fig 9 fr
52, 3, and 5 exhibits qualitatively the same structure as
in Fig. 8. We note that again no such multiparticle breath
with an' 1

2 exist forVP$V%k with k>2. However, the situ-
ation changes significantly if we search for antiphase bre
ers with an quite different from 1

2 . For r 52 and V
P$V%k , with k52 and 3, we represent the allowed valu
a0(V) versusa1(V) in Fig. 10. Two features are remark
able: ~i! an(C) are close to rational numbers, e.g.,1

4 , 1
3 , 2

3 ,
and 3

4 , which shows thatan(V) is close the limiting value
an

(k) @cf. Eq. ~27!# and ~ii ! a0(V)1a1(V) is about 0 or 1.
TheV2C phase diagram represented forr 52 and restricted
to $V%2 and $V%3 in Fig. 11 is qualitatively different from
the corresponding diagrams~Figures 5, 8, and 9! for breath-
ers with a(V)' 1

2 . In contrast to the latter, there are n
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antiphase breathers withan quite different from 1
2 for C

→0. This result is obvious sinceC→0 converges to the
single-particle oscillator for which it must bea5 1

2 . Hence it
is interesting that we have found breather solutions for
.1 with a different from about 1

2 and VP$V%k ,k>2,
which cannot continuously be obtained from those of
single-particle oscillators forC50. However, a generaliza
tion of MacKay and Aubry’s approach to independent tw
particle, three-particle, etc. oscillators coupled to each o
via the nearest neighbor interaction may serve as a bas
generate these multiparticle breathers after the coupling
these two-particle, three-particle, etc. particle oscillators

FIG. 8. Phase diagrams for in-phase multiparticle breathers~a!
n052, ~b! n053, and~c! n055. The hatched region represents t
numerical result, and the thick solid lines are analytical approxim
tions for Vmin(C) andVmax(C).
e

-
er
to

of
o

the remaining part of the chain has been turned on cont
ously.

IV. SUMMARY AND CONCLUSIONS

For a one-dimensional model with double-quadratic o
site and harmonic nearest neighbor interactions, we have
vestigated the existence and properties ofperiodic multipar-
ticle breathers wherer adjacent particles (r>1) perform
anharmonic oscillations between both local wells of the o
site potential. Although simple, this model has the advant
that the breather solutions can be found in a closed analy
form. This form parametrically depends onV52p/T, the
breather frequency andtn ,n50,1, . . . ,r 21 where 6 1

2 tn

-

FIG. 9. Similar to Fig. 8, but phase diagrams for antiphase m
tiparticle breathers.~a! n052, ~b! n053, and~c! n055 ~cf. text!.
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[anT fixes the time at which thenth breather particle
crosses the local barrier of the on-site potential. In order
this analytical form describes a physical solution it must f
fill a self consistency condition~SCC!. This SCC, which was
investigated both analytically and numerically, fixesan and
thereforetn for fixed V and finally yields for given coupling
constantC the frequency rangeVmin(C)<V<Vmax(C) for
which breathers exist.C itself is restricted toCmin<C
<Cmax.

We have not found breathers withV abovethe phonon
band, as they exist for af4 model, but only below. The
reason for this is that the double-quadratic on-site poten
has a so-calledsofteningcharacter which means that its a
harmonic oscillations have lower frequencies than its lin
counterpart, the phonons. For such potentials it is gen
that breathers above the phonon band do not exist@9#.

Below the phonon band we have found two types
r-particle breathers,r 51,2, . . . . One, for which its fre-
quency is within the spectrum of the single-particle oscilla
for C50 and where the length of stay of each of the breat
particles in the left and right well is about the same, i.
an' 1

2 for n50,1, . . . ,r 21, and another type for whichV
is below the single oscillator spectrum andan is different
from about 1

2 . In contrast to the first type, the latter cann
continuously be obtained from the independent sing
particle oscillator by keepingV fixed, i.e., from the antiin-

FIG. 10. Parametersa1 vs a0 for a two-particle breather withV
in the ~a! second and~b! third nonresonant frequency bands. Sm
points indicate negativeC, larger points markC.0. Vertical and
horizontal lines are a guide for the eye.

FIG. 11. Phase diagram for very slow two-particle breath
~shaded area!. Solid lines indicate the bounds of the nonreson
frequency bands fork52 and 3.
at
-

al

r
ic

f

r
r
,

-

tegrable limit@3#. Since this case occurs forr>2 only, one
probably has to start with the anharmonic oscillation of
independentr-particle cluster, or it may be possible to obta
them from an analytical continuation fromC50 by fixing,
e.g., the energy or action. One may ask why the second
of breather occurs for two and more particles only. The
swer can be seen from Fig. 12 which showsun(t), n
521, 0, 1, and 2, for a two-particle breather in antiphase a
aÞ 1

2 . For instance, the breather particlen51 performs an
oscillation during its time (2t1/2<t<t1/2) in the right well
without leaving it, which could violate the SCC. Breath
particle n50 does the same in the left well for2T1t0/2
<t<2t0/2. We have found that these kinds of intrawe
oscillations are characteristic of breathers of the second k
Such modulations may also occur for the formal soluti
~21! for r 51, but there they always violate the SCC. Th
this is not the case forr .1 is related to a subtle energ
exchange among the breather particles which is not poss
for r 51, i.e., a breather particle may oscillate for a wh
within one of the wells and may gain energy from its ad
cent breather particle in order to be able to cross the lo
barrier. In the course of this process this latter particle lo
energy and starts to perform intrawell oscillations, etc.

The question which naturally arises is the following: Ho
generic are the results for the DQ potential? Since the sin
particle oscillator spectrum for, e.g., af4 model is also
partly below the phonon band we expect similar type of b
havior as for the DQ potential. Particularly for a symmet
double-well potential there should be multi-breathers f
which one, two and more particles may cooperatively os
late between both wells. It would be interesting to check t
numerically.

Our results also establish an explanation for the dyna
cally cooperative clusters of about 3–5 particles which w
observed in a molecular dynamics~MD! simulation of the
DQ potential model for finite intermediate temperatures@4#.
In this respect we mention that a MD simulation of a on
dimensionalf4 model has also shown the existence of c
herent interwell@10# as well as intrawell oscillations@11#.
Unfortunately it has not been studied in detail how the s
of the clusters change with temperature. Particularly inter
ing is the question of whether the number of particles wh
perform coherent interwell oscillations increases with

l

s
t

FIG. 12. Solutionsun(t) for a very slow two-particle breathe
andn521,0,1, and 2.
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creasing temperature, or whether there exists only a ce
temperature range where interwell oscillations with abou
fixed number of particles exist. For the latter case one m
ask what determines the size of dynamically coopera
clusters. In this respect let us mention that neutron- and lig
scattering experiments on strongly supercooled liquids y
spectra which exhibit a so-called boson peak about one
cade in frequency below the ordinary phonon peak. Si
this boson peak does not possess a significant dispersio
must originate from local vibrations. Whether their existen
is mainly due to the disorder or may also be influenced
anharmonicity, as recently speculated,@12# is not clear.

To summarize, we may say that besides breatherlike
io

u
or
in
a
y
e
t-
ld
e-
e
, it
e
y

o-

tions within a local potential well there should exist mult
breathers where a cluster ofr particles performs coheren
inter-well oscillations. This type of breather should be ge
neric because anyN-particle potential in any dimension i
expected to have exp(aN) (a is a constant of order 1! local
minima @13#, @14#. For finite temperatures they should b
damped leading to a finite lifetime.
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